Dictionary to look up region geographies based on countries used in UN DESA International Migrant Stock.
Source:R/dict_ims.R
dict_ims.Rd
Intended for use as a custom dictionary with the countrycode package, where the existing UN region and area codes do not match those used by UN DESA in the WPP, see https://github.com/vincentarelbundock/countrycode/issues/253
Format
Data frame with 243 rows and 18 columns. One of first three columns intended as input for origin
in countrycode
.
- name
Country name
- iso3c
ISO numeric code
- iso3n
ISO 3 letter code
Remaining columns intended as input for destination
in countrycode
.
- name_short
Short country name
- ims
Country in UN DESA International Migration Stock data. Some codes added for older political geographies to match World Bank data and older country units in IMS
- region
Geographic region of country (6)
- region_sub
Geographic sub region of country (22). Filled using
region
if none given in original data- region_sdg
SDG region of country (8)
- region_sdg_sub
Sub SDG region of country (9). Filled using
region_sdg
if none given in original data- region_wb
World Bank region
- un_develop
UN development group of country (3)
- wb_income
World Bank income group of country (3)
- wb_income_detail
Detailled World Bank income group of country (4)
- lldc
Indicator variable for Land-Locked Developing Countries (32)
- sids
Indicator variable for Small Island Developing States (58)
- region_as2014
Region grouping used for global chord diagram plots by Abel and Sander (2014)
- region_sab2014
Region grouping used for global chord diagram plots by Sander, Abel and Bauer (2014)
- region_a2018
Region grouping used for global chord diagram plots by Abel (2018)
- region_ac2022
Region grouping used for global chord diagram plots by Abel and Cohen (2022)
Source
The aggregates_correspondence_table_2020_1.xlsx file of United Nations Department of Economic and Social Affairs, Population Division (2020). International Migrant Stock 2020.
Examples
dict_ims
#> # A tibble: 243 × 18
#> name iso3c iso3n name_short ims region region_sub region_sdg region_wb
#> <chr> <chr> <dbl> <chr> <lgl> <chr> <chr> <chr> <chr>
#> 1 Burundi BDI 108 Burundi TRUE Africa Eastern A… Sub-Sahar… Sub-Saha…
#> 2 Comoros COM 174 Comoros TRUE Africa Eastern A… Sub-Sahar… Sub-Saha…
#> 3 Djibouti DJI 262 Djibouti TRUE Africa Eastern A… Sub-Sahar… Middle E…
#> 4 Eritrea ERI 232 Eritrea TRUE Africa Eastern A… Sub-Sahar… Sub-Saha…
#> 5 Ethiopia ETH 231 Ethiopia TRUE Africa Eastern A… Sub-Sahar… Sub-Saha…
#> 6 Ethiopia… ETI 231 Ethiopia … FALSE Africa Eastern A… Sub-Sahar… Sub-Saha…
#> 7 Kenya KEN 404 Kenya TRUE Africa Eastern A… Sub-Sahar… Sub-Saha…
#> 8 Madagasc… MDG 450 Madagascar TRUE Africa Eastern A… Sub-Sahar… Sub-Saha…
#> 9 Malawi MWI 454 Malawi TRUE Africa Eastern A… Sub-Sahar… Sub-Saha…
#> 10 Mauritius MUS 480 Mauritius TRUE Africa Eastern A… Sub-Sahar… Sub-Saha…
#> # ℹ 233 more rows
#> # ℹ 9 more variables: un_develop <chr>, wb_income <chr>,
#> # wb_income_detail <chr>, lldc <lgl>, sids <lgl>, region_as2014 <chr>,
#> # region_sab2014 <chr>, region_a2018 <chr>, region_ac2022 <chr>
if (FALSE) {
library(tidyverse)
library(countrycode)
# download Abel and Cohen (2019) estimates
f <- read_csv("https://ndownloader.figshare.com/files/38016762", show_col_types = FALSE)
f
# use dictionary to get region to region flows
d <- f %>%
mutate(
orig = countrycode(
sourcevar = orig, custom_dict = dict_ims,
origin = "iso3c", destination = "region"),
dest = countrycode(
sourcevar = dest, custom_dict = dict_ims,
origin = "iso3c", destination = "region")
) %>%
group_by(year0, orig, dest) %>%
summarise_all(sum)
d
}