Estimate net migration from vital statistics
Usage
net_vs(
.data,
pop0_col = NULL,
pop1_col = NULL,
births_col = "births",
deaths_col = "deaths"
)
Arguments
- .data
A data frame with two rows with the total number of lifetime in- and out-migrants in separate columns. The first row contains totals at the first time point and second row at the second time point.
- pop0_col
Character string name of column containing name of initial populations. Default
"pop0"
.- pop1_col
Character string name of column containing name of end populations. Default
"pop1"
.- births_col
Character string name of column containing name of births over the period. Default
"births"
.- deaths_col
Character string name of column containing name of deaths over the period. Default
"deaths"
.
Value
A tibble with additional columns for the population change (pop_change
), the natural population increase (natural_inc
) and the net migration (net
) over the period.
References
Bogue, D. J., Hinze, K., & White, M. (1982). Techniques of Estimating Net Migration. Community and Family Study Center. University of Chicago.
Examples
library(dplyr)
d <- alabama_1970 %>%
group_by(race, sex) %>%
summarise(births = sum(pop_1960[1:2]),
pop_1960 = sum(pop_1960) - births,
pop_1970 = sum(pop_1970)) %>%
ungroup()
#> `summarise()` has grouped output by 'race'. You can override using the
#> `.groups` argument.
d
#> # A tibble: 4 × 5
#> race sex births pop_1960 pop_1970
#> <chr> <chr> <dbl> <dbl> <dbl>
#> 1 non-white female 126886 515483 483882
#> 2 non-white male 131767 467648 426452
#> 3 white female 224034 1159548 1298342
#> 4 white male 236481 1124061 1235489
d %>%
mutate(deaths = c(51449, 58845, 86880, 123220)) %>%
net_vs(pop0_col = "pop_1960", pop1_col = "pop_1970")
#> # A tibble: 4 × 9
#> race sex births pop_1960 pop_1970 deaths pop_change natural_inc net
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 non-white fema… 126886 515483 483882 51449 -31601 75437 -107038
#> 2 non-white male 131767 467648 426452 58845 -41196 72922 -114118
#> 3 white fema… 224034 1159548 1298342 86880 138794 137154 1640
#> 4 white male 236481 1124061 1235489 123220 111428 113261 -1833